Deep Learning Accurately Classifies Elbow Joint Effusion in Adult and Pediatric X-Rays

0
  • Kim, HH & Gauguet, J. Pediatric elbow injuries. Semin. Ultrasound CT MRI 39384–396 (2018).

    Google Scholar article

  • Major, NM, Crawford, ST, Kingshighway, SB & Louis, S. Elbow effusions in trauma in adults and children: is there an occult fracture?. AJR Am. J. Roentgenol. 178413–418 (2002).

    Google Scholar article

  • Mattijssen-Horstink, L. et al. Radiological discrepancies in the diagnosis of fractures in a Dutch educational emergency department: a retrospective analysis. Scan. J. Trauma Resusc. Emergency Med. 281–7 (2020).

    Google Scholar article

  • Murphy, WA & Siegel, MJ Elbow fat pads with new signs and expanded differential diagnosis. Radiology 124659–665 (1977).

    CAS Google Scholar Article

  • Al-Aubaidi, Z. & Torfing, T. The role of fat pad sign in the diagnosis of occult elbow fractures in pediatric patients: a prospective magnetic resonance imaging study. J. Pediatr. Orthop. B 21514–519 (2012).

    Google Scholar article

  • Jie, K., van Dam, L. & Hammacher, E. Isolated fat pad sign in acute elbow injury: is it clinically relevant?. EUR. J. Emerg. Med. 23228-231 (2016).

    Google Scholar article

  • Lyer, RS, Thapa, MM, Khanna, PC & Chew, FS Pediatric Bone Imaging: Imaging of Elbow Trauma in Children – A Review of Acute and Chronic Injuries. AJR Am. J. Roentgenol. 1981053-1068 (2012).

    Google Scholar article

  • Fazal, MI, Patel, ME, Tye, J. & Gupta, Y. The Past, Present, and Future Role of Artificial Intelligence in Imaging. EUR. J. Radiol. 105246-250 (2018).

    Google Scholar article

  • Kohli, M., Prevedello, LM, Filice, RW & Geis, JR Implementing machine learning in radiology practice and research. AJR Am. J. Roentgenol. 208754–760 (2017).

    Google Scholar article

  • Kim, DH & MacKinnon, T. Artificial Intelligence in Fracture Detection: Transfer Learning from Deep Convolutional Neural Networks. Clin. Radiol. 73439–445 (2018).

    CAS Google Scholar Article

  • Guberina, N. et al. Detection of early signs of infarction with machine learning-based diagnosis using the Alberta Stroke Program Early CT Score (ASPECTS) in clinical routine (Springer, 2018). https://doi.org/10.1007/s00234-018-2066-5.

    Book Google Scholar

  • Duron, L. et al. Evaluation of an AI aid in the detection of appendicular skeletal fractures in adults by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 0001–10 (2021).

    Google Scholar

  • Taylor, AG, Mielke, C. & Mongan, J. Automated detection of moderate and large pneumothorax on frontal chest radiographs using deep convolutional neural networks: a retrospective study. PLoS Med. 15, e1002697. https://doi.org/10.1371/journal.pmed.1002697 (2018).

    PubMed Article PubMed Central Google Scholar

  • Qin, C., Yao, D., Shi, Y. & Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: a survey. Biomedical. Eng. On line 17113 (2018).

    Google Scholar article

  • Horng, M., Kuok, C., Fu, M., Lin, C. & Sun, Y. Cobb measuring spine angle from x-ray images using a convolutional neural network . Calculation. Math. Med Methods. 20196357171 (2019).

    Google Scholar article

  • Masudur Rahman Al Arif, SM, Knapp, K. & Slabaugh, G. Fully automatic cervical vertebrae segmentation framework for radiographic images. Calculation. Methods Programs Biomed. 15795-111 (2018).

    Google Scholar article

  • Lakhani, P. & Sundaram, B. Deep learning in chest radiography: automated classification of pulmonary tuberculosis using convolutional neural networks. Radiology 284574–582 (2017).

    Google Scholar article

  • Lee, H. et al. Fully automated deep learning system for bone age assessment. J. Digital Imaging 30427–441 (2017).

    Google Scholar article

  • Alshamrani, K., Hewitt, A. & Offiah, AC Applicability of two bone age assessment methods to children in Saudi Arabia. Clin. Radiol. 75(156), e1-156.e9 (2020).

    Google Scholar

  • Tiulpin, A. et al. Prediction of knee osteoarthritis progression based on multimodal machine learning from plain radiographs and clinical data. Science. representing 920038 (2019).

    ADS CAS Article Google Scholar

  • Chung, SW et al. Automated detection and classification of proximal humerus fracture using a deep learning algorithm. Acta Orthop. 89468–473 (2018).

    Google Scholar article

  • Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, AP, and Palmer, LJ Hip fracture detection with radiologist-level performance using deep neural networks. eprint arXiv:1711.06504 (2017).

  • Kitamura, G. Deep learning evaluation of pelvic radiographs for position, material presence, and fracture detection. EUR. J. Radiol. 130109139 (2020).

    Google Scholar article

  • Irvine, J. et al. CheXpert: A large dataset of chest x-rays with uncertainty labels and expert comparison. proc. AAAI Conf. Artif. Information. 33590–597 (2019).

    Google Scholar

  • Rajpurkar, P. et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225 (2017).

  • Lindsey, R. et al. The deep neural network improves clinicians’ fracture detection. proc. Natl. Acad. Science. – PNAS. 11511591–11596 (2018).

    ADS MathSciNet CAS Google Scholar Article

  • Kalmet, PHS et al. Deep Learning in Fracture Detection: A Narrative Review (Informa UK Limited, 2020).

    Google Scholar

  • England, J.R. et al. Traumatic pediatric elbow joint effusion detection using deep convolutional neural network. AJR Am. J. Roentgenol. 2111361-1368 (2018).

    Google Scholar article

  • Choi, J. et al. Use of a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest. Radiol. 55101–110 (2020).

    Google Scholar article

  • Rayan, JC, Reddy, N., Kan, JH, Zhang, W., and Annapragada, A. Binomial classification of pediatric elbow fractures using a deep learning multiview approach mimicking the decision making of radiologists . Radiol. Artif. Information. 1e180015 (2019).

    Google Scholar article

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. eprint arXiv:1409.1556 (2014).

  • Howard, AG et al. MobileNets: efficient convolutional neural networks for mobile vision applications. eprint arXiv:1704.04861 (2017).

  • He, K., Zhang, X., Ren, S. & Sun, J. Identity Mappings in Deep Residual Networks. eprint arXiv:1603.05027.

  • Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. Inception-v4, inception-ResNet and the impact of residual connections on learning. eprint arXiv:1602.07261 (2016).

  • Zoph, B., Vasudevan, V., Shlens, J. & Quoc, V. Learning transferable architectures for scalable image recognition. eprint arXiv:1707.07012 (2017).

  • Chea, P. & Mandell, JC Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal radiol. 49183–197 (2020).

    Google Scholar article

  • Deng, J., Dong, W., Socher, R., Li, LJ., Li, K. & Fei-Fei, L. ImageNet: A Large Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and Pattern Recognition248–255 (2009).

  • Pedrogosa, F. et al. Scikit-learn: Machine learning in Python. J.Mach. Learn. Res. 122825–2830 (2011).

    MathSciNet MATHGoogle Scholar

  • Vallat, R. Penguin: Statistics in Python. J. Open Source Software. 31026 (2018).

    Article on Google Scholar Ads

  • Manaster, B., May, D. & Gisler, D. Musculoskeletal Imaging 4th ed. (Elsevier Saunders, 2013).

    Google Scholar

  • Share.

    About Author

    Comments are closed.